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Steady solutions in the form of two-dimensional rolls are obtained for convection 
in a horizontal layer of fluid heated from below as a function of the Rayleigh and 
Prandtl numbers. Rigid boundaries of infinite heat conductivity are assumed. 
The stability of the two-dimensional rolls with respect to three-dimensional 
disturbances is analysed. It is found that convection rolls are unstable for 
Prandtl numbers less than about 5 with respect to an oscillatory instability in- 
vestigated earlier by Busse (1972) for the case of free boundaries. Since the 
instability is caused by the momentum advection terms in the equations of 
motion the Rayleigh number for the onset of instability increases strongly with 
Prandtl number. Good agreement with various experimental observations is 
found. 

1. Introduction 
In  recent years convection in a layer of fluid heated from below has become the 

principal example for the development of turbulence from a simple static 
state by way of discrete transitions. Among the various transitions the tran- 
sition to oscillatory convection plays a special role since it introduces time de- 
pendence. Although the oscillatory instability occurs at  relatively low Rayleigh 
numbers for Prandtl numbers of the order one or less, until recently it has not 
been investigated as intensively as the transition to bimodal convection. Experi- 
mentally as well as theoretically convection in a high Prandtl number fluid is 
easier to investigate, and it is for this reason that the transition to bimodal 
convection has been studied in considerable detail (Busse 1967; Krishnamurti 
1970a; Busse & Whitehead 1971). Recently a number of experiments (Willis 
85 Deardorff 1970; Krishnamurti 1970b, 1974) have shed light on the onset of 
time-dependent convection at low Prandtl numbers and the first rigorous 
theory on oscillatory convection was presented by Busse (1972) for the case of 
stress-free boundaries. Since in general the experiments were performed with 
rigid boundaries a direct comparison between observations and theoretical pre- 
dictions has not been possible. In  particular, the question of whether or not the 
linear stability analysis is capable of quantitatively describing the properties 
of the observed oscillations has remained unanswered. One of the motivations 
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for this paper is to fill this gap by extending the analysis of Busse (1972) to the 
more realistic case of rigid boundaries. 

The extension of the theory of oscillations to rigid boundaries does not merely 
involve quantitative aspects. In  contrast to other properties of convection the 
mechanism of the oscillatory instability is profoundly altered by the presence 
of rigid boundaries. It was pointed out by Busse (1972) that the occurrence of 
oscillations is connected with the appearance of vertical vorticity, which vanishes 
in the case of steady convection rolls. The role of the vertical vorticity differs 
significantly between the cases of rigid and free boundaries. The latter case is 
distinguished by the property that a non-decaying component of homogeneous 
vertical vorticity corresponding to a rigid rotation of the layer is permitted by the 
boundary conditions. Indeed, it always had to be assumed implicitly in theories 
of convection with free boundaries that the mean vertical vorticity vanishes. In  
the case of rigid boundaries this is a consequence of the boundary conditions. In  
the limit when the horizontal wavenumber of the disturbance vanishes a mode of 
vertical vorticity with vanishing dissipation exists in the case of free boundaries. 
Hence the critical Rayleigh number R, for the onset of oscillations corresponds to 
this limit. In  the case of rigid boundaries the critical value R, is considerably 
higher and corresponds to a finite value of the horizontal disturbance wave- 
number. 

In  addition to the oscillatory instability we investigate other possible mechan- 
isms of instability in this paper in order to present a complete stability analysis 
of convection rolls as a function of the Prandtl number and Rayleigh number. 
Although the other instabilities are well understood from the case of infinite 
Prandtl number (Busse 1967) and from the stability analysis at  small amplitude 
(Busse 1971) their dependence at  finite amplitudes and finite Prandtl numbers 
is of interest for comparison with experiments. 

A major part of the numerical analysis presented in this paper is concerned 
with the steady two-dimensional solution as a function of the wavenumber E ,  

the Rayleigh number R and the Prandtl number P. The steady solutions have to 
be calculated with sufficient accuracy in order that reliable results for the onset of 
instabilities can be obtained. The properties of the steady solutions are of interest 
in themselves, however. It has been an open problem in the theory of convection 
that the measured convective heat transport appears to  be relatively indepen- 
dent of Prandtl number while the small amplitude theory of Schliiter, Lortz & 
Busse (1965) predicts a variation proportional to P2 in the limit of small P. The 
present analytical results show that a rapid increase of the convective heat trans- 
port with Rayleigh number takes place at  low Prandtl number as the Rayleigh 
number is increased beyond the critical value R,. The heat transport will also 
be influenced by the onset of oscillations. This influence is likely to be small, 
however, and has not been investigated in the framework of the present linear 
analysis of oscillations. 

The paper starts in $ 2  with the derivation of the non-dimensional equations 
for the problem. The method of solution is outlined for the case of the nonlinear 
steady problem and for the case of the linear stability analysis. The results for 
the steady solution as a function of wavenumber, Prandtl number and Rayleigh 
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number are described in $3. The results of the stability analysis are presented in 
3 4. Each of the four mechanisms of instability is discussed separately and as far 
as possible the results are related to observed evidence. Some concluding remarks 
are made in $5. 

2. Mathematical formulation of the problem 
2.1. Basic equations 

The mathematical description of steady convection and its instabilities will be 
based on the Boussinesq approximation of the equations of motion and the heat 
equation, Accordingly, all material properties are assumed to be constant with 
the exception of the density in the gravity term. We shall use a dimensionless 
description by introducing the layer thickness d, d2/x and ATIR as scales for 
length, time and temperature, respectively, where K is the thermal diffusivity 
and AT is the temperature difference between the lower and upper boundary of 
the convection layer. The dimensionless equations for the velocity vector v and 
for the deviation 8 from the temperature distribution in the static state are 

v.v = 0,  

V ~ V +  w-vr = ~ - l ( v . v v + a v / a t ) ,  
VW+RA.V = v . v ~ + a o / a t .  

The dependence of the problem on the physical conditions of the layer has been 
reduced to  two dimensionless parameters: the Rayleigh number R and the 
Prandtl number P. These parameters are defined by 

R = ygATd3/v~, P = YIK, 
where y is the coefficient of thermal expansion, v is the kinematic viscosity and 
g is the acceleration due to gravity. The unit vector A denotes the vertical direc- 
tion opposite to that of gravity. All terms which can be expressed as gradients in 
( 2 )  have been included in V r .  

It is convenient to eliminate the equation of continuity from the problem by 
introducing the following general representation for the solenoidal velocity 
field : 

where the operators S and E are defined by 

V = 8 $ + E $ ,  (4)  

sq5 = v x  (V x A$), q h  = V x  A$. 

After operating with A .  V x (V x and A. V x on the equation of motion (2), 
we obtain from (2) and (3) the following equations for the scalar variables q5, llf 
and 0: 

( 5 )  

(6) 

(7) 

a 
P S. [(S$ +a)). V(Sq5 + E@)] V2Az$), 

a 
V2A211. = p E.[(sq5+Ell.).V(sq5+€$)l+atA211f], ‘I 

v2e - RA,$ = [(s$ + v] 0 + aelat, 
40-2 
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where A, denotes the Laplacian with respect to the horizontal dimensions; 
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A, = a;z + a;v. 
The boundary conditions at  the rigid boundaries of the layer are given by 

Q = a s Q = $ = 8 = 0  at Z =  +Q. 

For the condition on 8 we have made the usual assumption that the thermal con- 
ductivity of the solid region adjacent to the convection layer by far exceeds the 
conductivity of the fluid. 

It is well known that steady solutions of (5) and (7) with vanishing vertical 
vorticity, i.e. @ = 0, exist for R > R, = 1708 (Chandrasekhar 1961, p. 34). In  
the paper by Schliiter et al. (1965), which we shall refer to as SLB in the following, 
it was shown that among all possible solutions only the solutions in the form of 
two-dimensional rolls are stable a t  small values of R - R,. It is the goal of the 
present paper to investigate the stability of convection rolls for finite values of 
R - R, in the case of low to moderate Prandtl numbers and thereby extend the 
analysis of Busse (1967), who investigated the special case of infinite Prandtl 
number. For this purpose the steady two-dimensional solutions corresponding 
to convection rolls need to be computed first. Following this a linear analysis of 
their stability with respect to infinitesimal disturbances will reveal the range of 
physically realizable two-dimensional convection rolls. 

2.2. The steady problem 
The case of steady two-dimensional convection rolls corresponds to solutions 
independent of x and t of (5) and (7) with (6) having only a vanishing solution 
with 11. = 0. Accordingly, the equations for $ and 0 reduce to 

8, (V4$ - 0) = P-l {a;, $a:vm Q - 4% 4%zs Q + a;s 4a;vvv 4 - a:v $a;vvs $ } 9  ( 8) 

vae - Ra;, 4 = $av e - Q a, 8. (9) 
We shall solve (8) and (9) numerically by using a Galerkin technique. For this 
purpose we expand 8 and $ in terms of orthogonal functions: 

for v even 

(A$(W+,) '1 ( A # V + l ) z )  for odd 
cash (*A&+,,) - COB (&(U+l,) 

f,(z) = sin [vn(z + Q)] and 

satisfy the boundary conditions for Q and 6, respectively. The values /3, and A, 
are determined as the positive roots of 

coth ip- cot */3 = 0, 

and are given in the book by Chandrasekhar (1961, p. 635). 

The functions 

tanh +A + tan+h = 0 
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The summation in expressions ( l O a ,  b )  runs through all integers - co c h < 00 

(aov is excluded), 1 Q v < 00. The symmetry of the basic equations allows us to 
restrict ourselves to the case of a solution symmetric in y for which 

a,, = a-,,, b,, = bdAv. 

In  order to compute the unknown coefficients ahv and b,, it is necessary to 
truncate the representation ( l O a ,  b )  at a sufficiently high level. Hence, we choose 
a truncation parameter N such that all coefficients with 

Ihl + v  > N ( 1 2 )  

are neglected. After substituting expansions (10a, b )  into (8) and (9), multi- 
plying them by +Ky and OKP, respectively, and averaging over the fluid layer we 
obtain the following set of algebraic equations for the unknowns a,,, and bAv: 

The summation convention has been applied in (13 ) .  The calculation of the 
matrices I@) from the terms givenin (8) and (9) is straightforward. Using angular 
brackets to indicate an average over the fluid layer we can write, for example, 

Because the nonlinear terms in (8) and (9) are quadratic and include an odd 
number of z derivatives the complete set ( 1 3 )  contains a subset of equations in 
which only variables with even h + v are present. All solutions which exist close 
to the critical Rayleigh number are contained in this subset. Hence it is sufficient 
to restrict the analysis to  the subset because the physical realization of a more 
general two-dimensional solution must be associated with an instability. The 
results of the stability analysis in $ 4  do not show any indication that a two- 
dimensional solution not contained in the subset could be realized. 

Assuming that the truncation parameter N is an even integer we have 
$N(N + 1) equations to solve. Starting with a guessed solution, usually a solution 
for a lower value of the Rayleigh number, we use a $ N ( N +  1 )  dimensional 
Newton-Raphson iteration procedure to obtain the solution. Convergence of the 
iterative scheme is ensured by an appropriate choice of the relaxation parameter. 
Between 5 and 10 iterates are usually sufficient to obtain a converged solution. 

A more serious problem is the convergence of the truncation approximation. 
The choice of the truncation parameter N is regarded as satisfactory if the 
coefficients with [ A / +  v > N make a negligible contribution to the solution. 
Following Busse (1967) the convective heat transport was chosen as a criterion 
for the approximation owing to  its fairly sensitive dependence on the higher- 
order coefficients. The convergence of the convective heat transport was not 
monotonic in N but showed a slight overshoot of 2-3% or more at moderate 
Prandtl number and subsequent decrease to convergence as N was increased 
further. At lower Prandtl number the overshoot was more pronounced; for 
P = 0.001 and R II 2000 the overshoot approached a factor of 2 or more. Accord- 
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ingly, the truncation approximation was regarded as satisfactory if the value of 
the convective heat transport decreased by 1-2 yo or less as the truncation para- 
meter was increased from N - 2 to N .  Calculations in a few representative cases 
with larger truncation values have shown that the heat-transport values calcu- 
lated using this criterion should be within 4-1 yo of the exact value. 

2.3. The stability problem 
For the investigation of the stability of the steady two-dimensional solution 
we superimpose onto it arbitrary infinitesimal disturbances. If any disturbance 
with a growing time dependence exists, the steady solution is unstable; other- 
wise it will be regarded as stable. The equations for the disturbance field {$, $, @ 
are obtained from (5), (6) and (7)  by replacing q5, @ and B by q5 + 6, $ and 0 + 6, 
respectively and subtracting the equations for the steady solution {$, S}: 

a 
V4A2$ - A, 6 = S .  [(S$ + E$). V(S4) + (84). V(S4 + E$)] +at VzA2$) ,  ( 1 4 4  P 

~ 2 0 -  RA,$ = (a&$ - ax$)  a,e- (a,$) azs + a;&, e"- a;,q5az 6+ a6pt. ( 1 4 ~ )  
Because of the infinitesimal amplitude of the disturbances, those terms which are 
quadratic in the disturbance variables have been neglected. Although the system 
(14) of stability equations is linear in contrast to the equations for the steady 
solution, the analysis is complicated by the fact that solutions with arbitrary 
three-dimensional spatial dependence have to be considered. However, since 
(14) does not depend explicitly on x and t and the explicit dependence on y is 
periodic the general solution can be written as a sum of solutions which depend 
exponentially on x, y and t and which are multiplied by a function of y and z 
with the same periodicity as the steady solutions: 

$ = ( ti,, e i k / g , ( z ) )  ei(dy+bx)+at (154 

$ = ( x E,,,eihaarfy(z)) e i (dy+W+gt ,  (15b) 

6 = ( x bAve i "~ fv ( z ) )  e i ( d y + W + c t .  (15c) 

4 V 

A, !J 

A, v 

The functions fv(z) and q,(z) are given by expressions (11). The variable $ 
has been expanded in the same system of functions as 6 since both satisfy the 
same boundary conditions. 

Substitution of expansions (15) into (14) leads to equations for the unknowns 
ti,,,, b"hv and Ehv when the same procedure as in the steady problem is used: 

1 0- 
1'11) K/LAV 6 h!J + ~ ; g ~ , , b " ~ ~  + p - { p 3 )  Kphv 6 hv + I ~ & J  = - p ~ ( 1 5 )  K / L , Y ~ h , , ,  IKI +P 6 x, (16a)  

1 a 
I(21) K ~ A U  c" Av +-{Ik~~,a",vfIL~~uEhv} P = ~Ik?$,,E~,,, [ K I + , U  < N ,  (16b)  

I:~~!Jb"Ay + RILyj,, ti,, + ILy,&a"hv + I~~j, ,Ehv + I f ~ ~ y b A , ,  = c ~ - T k ~ ~ , , b " ~ ~ ,  I K I  +,LL < N .  
(16c) 
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The coefficient matrices Ifjl,, follow from the corresponding terms in (14). The 
matrices generated by the advection terms have a somewhat complicated struc- 
ture. The calculation, however, is straightforward, as, for exampIe, the de- 
finition of I$)A,, is 

Ig?v = - I: u p  <A$ * {%w. v w p , ,  + vpr. VsA,)).  
m 

The system (16) of linear homogeneous equations constitutes an eigenvalue 
problem for the eigenvalue cr. In  order to apply the usual algebraic eigenvalue 
methods, the indices h and v, and K and p had to be combined to form single 
running subscripts. In  addition the coefficients CAY, 6Aw and CAY were combined 
sequentially to form a single variable. The analysis of the eigenvalue problem 
(16) is further simplified by noticing that it separates into four subsystems. 
First, it is seen that equations for coefficients with even h + v and odd h + v 
separate. In each case the symmetry of the steady solution with respect to the y 
direction sllows a further separation into solutions which are either symmetric 
or antisymmetric in y. It should be noticed that in all cases the coefficients CAv 
have the opposite symmetry properties to the coefficients CAP and 6*,,. In  the 
following, all references to symmetry properties will be made with respect to the 
latter coefficients. 

The primary objective of the analysis of problem (16) is to determine as a func- 
tion of ct and P the Rayleigh number at  which the real part of the eigenvalue cr 
with largest real part vanishes. The corresponding eigenvector describes the 
disturbance leading to instability of the steady solution when the Rayleigh 
number passes through the marginal value. Even though the system (16) has 
been separated into four sybsystems the amount of computation for the deter- 
mination of stability boundaries is still substantial because of the large number 
of parameters involved. For this reason only a few representative cases will 
be investigated. Fortunately the dependence of the eigenvalue CT on various 
parameters is smooth and interpolation formulae can be used successfully to 
reduce the cost of computation. 

3. The steady solution 
In  describing the numerical results for steady convection rolls we shall con- 

centrate on the convective heat transport, which not only is the parameter of 
primary physical interest but which also appears to characterize best the other 
aspects of convection. For example, viscous dissipation occurs at  the same rate 
as the convective heat transport according to the average of (2) after it is multi- 
plied by v : (v.  ne) = ( I V V I ~ ) .  

Nu = 1 +(v. At?}/R 

A number of numerical studies of convection rolls have yielded results for the 
Nusselt number 

as a function of the Prandtl number and the horizontal wavenumber a. Most 
of the previous results have been obtained by finite-difference methods, which 
have been reviewed by Plows (1 968) and Denny & Clever (1 974). The Fourier 
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FIGURE 1. The wavenumber dependence of the convective heat transport. The values 
for P = 0.71 are very close to those for P = 7.0 as is evident from table 1. 

expansion method used in the present analysis appears to circumvent some of the 
difficulties with the representation of the boundary conditions and extraction 
of the wall gradients in finite-difference methods. In  addition, the numerical 
procedure used here for the steady solution is more easily extended to the investi- 
gation of the stability of convection rolls owing to the periodicity of the solutions 
in the horizontal co-ordinates. Representative Nusselt number results are given 
in table I. Comparison with the results of Plows (1968) and the more recent work 
of Willis, Deardorff & Somerville (1972) shows good agreement between the two 
methods. 

It is interesting to note that the convective heat transport at  moderate Ray- 
leigh numbers tends to increase with decreasing Prandtl number in contrast to 
the behaviour at  Rayleigh numbers close to R,, where the small amplitude results 
presented in SLB predict a monotonic decrease with decreasing P. At a Rayleigh 
number of about 4000, for ct = 3.117, the heat transport in air already exceeds 
the heat transport in water by a small amount, which indicates a change in the 
role of the inertial terms a t  finite amplitude. 

The wavenumber dependence of the Nusselt number given in figure 1 shows 
little variation with Rayleigh number. As in the case P = CO, the maximum of the 
Nusselt number at  a given Rayleigh number is attained for a wavenumber close 
to the critical value ac. 

The most interesting results of the present analysis are those obtained for the 
case of small Prandtl number, which has received little attention in the previous 
literature. This is partly caused by increasing numerical difficulties as the Prandtl 
number decreases. For this reason the range of Rayleigh numbers for which 
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1 .o 

0.1 

I z 
0.01 

0.001 

R-R, 

FIGURE 2. The dependence of the convective heat transport on the Rayleigh number for 
low Prandtl numbers (given on curves) a t  a = a,. The figure indicates the convergence of 
the convective heat transport for different Prandtl numbers at higher Rayleigh numbers. 

reliable results could be obtained decreased significantly even though values of the 
truncation parameter up to N = 14 or 16 were employed. This corresponds to 
the solution of 105 and 136 simultaneous nonlinear algebraic equations, respec- 
tively. On the other hand, calculations of the heat transport for two-dimensional 
convection do not correspond to physically realizable solutions beyond the second 
critical Rayleigh number R, of instability, which also decreases significantly 
as P decreases as will be discussed in $4.4. 

Even within these limitations the calculations shown in figures 2 and 3 tend 
to resolve, however, the old problem of the discrepancy between the theoretical 
prediction and observed dependence of the heat transport on the Prandtl 
number. While the small amplitude expansion results of SLB predict that 
convective heat transport should tend to zero like P2 for a given small value of 
R - R,, the present calculations indicate only a small influence of the Prandtl 
number on the heat transport for R-R, of order 1000. The finite amplitude 
results of the present analysis supplement the results of SLB in two important 
aspects. First, the range of R - R, for which the small amplitude result is applic- 
able decreases rapidly with decreasing Prandtl number for P 5 0.71. Second, 
the dependence of the heat transport on R - R, beyond the range of validity of 
the small amplitude results shows a pronounced change as the Prandtl number 
is decreased below the value 0.71. This is shown in figure 3, where instead of 
continuing to fall below the line of constant (Nu-  l ) / (R-  R,) as suggested by 
the small amplitude results, the convective heat transport exceeds that value 
in order to increase rapidly until it nearly matches the heat transport of high 
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FIGURE 3. The convective heat transport scaled with P2(R-R,) .  The curves indicate the 
qualitative difference between low Prandtl number cases and the case P = 0.71, which is 
representative for higher Prandtl numbers. - - -, results derived from the small amplitude 
expansion in SLB. All curves are calculated for 01 = 3.117. 

Prandtl number convection. As shown in figure 2 the P2 decay of the convective 
heat transport at  low Prandtl number is nearly offset when the Rayleigh number 
reaches a value of order 3000. Thus the heat transport becomes relatively inde- 
pendent of the Prandtl number at  moderate Rayleigh numbers in agreement 
with experimental findings. 

We interpret this interesting behaviour of the heat transport as the opposing 
effects of the nonlinear terms in the equation of motion and the heat equation. 
At  moderate and large Prandtl numbers, when the momentum advection term 
is negligible in comparison with the heat advection term, the latter limits the 
increase of the convective heat transport. This saturation effect is primarily 
caused by the fact that the temperature fluctuation 8 cannot exceed the pre- 
scribed temperature difference between the boundaries. At low Prandtl numbers, 
when the momentum advection term is much stronger, it  shows the opposite 
effect. The inertia of the velocity field allows the convective heat transport to 
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0.024 I I 1 I 1 1 1 1  1.2 I 1 I I I I I I I  I 
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0.1 1 10 

Prandtl number 

FIGURE 4. The dependence of the kinetic energy *(v.v) on the Prandtl number for dif- 
ferent Rayleigh numbers in the case a = a,. For cornparison the Nusselt number has been 
plotted (dashed lines). 

become more effective and only at higher Rayleigh numbers does the limiting 
thermal factor become noticeable. 

We have limited the discussion in this section to the convective heat transport 
although it comprises only a fraction of the numerical results obtained from the 
calculations. The kinetic energy of the convective velocity field is another 
physical quantity of interest. In  the dimensionless form used in this paper it 
shows a dependence on the Prandtl number which is rather similar to that of 
the heat transport. This is evident from figure 4, which describes the kinetic 
energy in the case of the critical wavenumber ac. For Prandtl numbers larger 
than unity the kinetic energy is essentially independent of the Prandtl 
number. At moderate Rayleigh numbers it exhibits a very slight maximum at 
about P = 2, which is somewhat larger than the Prandtl number at  which the 
maximum heat transport occurs. 

4. Stability boundaries for steady convection rolls 
For a complete stability analysis the four subsets of the set (16) of equations 

corresponding to four different symmetries of the stability problem must be 
investigated for all values of the disturbance wavenumber parameters b and d .  
This investigation is eased by prior knowledge of the properties of potentially 
unstable disturbances. Qualitative insight into various instabilities can be gained 
from the analytical results of the small amplitude expansion. At Rayleigh 
numbers close to the critical value the analytical results can also be used for 
a quantitative comparison, which has been helpful in checking the accuracy of 
the numerical program. While some of the analytical results can be foundin SLB 
a more extensive review has been given by Busse (1971). The main result of the 
analytical study is that critical disturbances for which the real part of the growth 
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rate 5 reaches a maximum correspond to b = 0 or d = 0. Test calculations with 
the numerical program have shown that this property is not limited to Rayleigh 
numbers close to R,. In  the following we shall discuss four different classes of 
disturbances which may cause instability. We note that they do not all corre- 
spond to different subsets of the stability system (16). It turns out that distur- 
bances with h + v odd and antisymmetric dependence on y were never found to 
have growing time dependence, a t  least not in the R, a, P region where all dis- 
turbances with h + v even or symmetric y dependence have negative real parts. 
In  general, disturbances of certain symmetry were principally investigated 
in those regions where no growing disturbances of different symmetry had been 
found. 

Complete stability regions in the R, a plane for steady rolls have been drawn 
in three representative cases, corresponding to the Prandtl numbers of water, 
air and mercury. Since the results for the case P = 00 are known from previous 
work and since additional graphs have been given for the onset of the oscillatory 
instability, we feel that sufficient information is provided to give a fairly com- 
plete picture of the general stability behaviour of convection rolls. 

4.1. The cross-roll instability 
The cross-roll disturbances correspond to the case d = 0, h + v odd and sym- 
metric y dependence. The name of these disturbances is derived from the pro- 
perty that at  small Rayleigh number they tend to replace steady rolls with a 
wavenumber a sufficiently different from the critical value a, with more nearly 
optimally adjusted convection rolls. The strongest growing cross-roll distur- 
bances are characterized for this reason by a wavenumber b which is close to 
a,. The fact that a perpendicular direction is favoured for the disturbance roll 
indicates that the stabilizing effects exerted by the steady roll are minimized at  
this angle. At high Rayleigh number the cross-roll disturbances change their 
character somewhat in that they become strongest in the thermal boundary 
layers. In  this case the cross-roll instability leads to a transition to bimodal con- 
vection. Since the cross-roll instability has been investigated theoretically 
(Busse 1967) and experimentally (Busse & Whitehead 1971) in detail in the 
case of high Prandtl number we shall restrict the discussion to the influence of 
changing the Prandtl number. In general the momentum advection terms, which 
are proportional to P-1, produce a stabilizing influence. This fact, which is 
already evident in the analytical results of Busse (1971), is found to hold even for 
large Rayleigh number. Also it is influenced by an increase in the heat transport, 
which tends to stabilize the thermal boundary layers according to an argument 
presented by Busse (1967). As a consequence the region of stable convection 
rolls is extended up to Rayleigh numbers of the order 5 x lo4 in the case P = 7.0 
(figure 5) from the value 2-3 x lo* in the case P = co. At lower Prandtl numbers 
the cross-roll instability loses importance since other mechanisms of instability 
appear to be more constraining. 

Experimental observations of the stability of convection rolls to the cross- 
roll disturbance show the same Prandtl number dependence as do the present 
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FIGURE 5. The stability of two-dimensional convection in st water layer ( P  = 7.0). 
Convection rolls are stable in the closed region. 

theoretical results. Krishnamurti (1970a, b )  observes the second transition Ray- 
leigh number to be essentially constant with decreasing Prandtl number (and 
also decreasing wavenumber) so far as the cross-roll instability is concerned. 
When the effects of a more pronounced decrease in wavenumber at  lower Prandtl 
numbers are taken into account (Krishnamurti 1 9 7 0 ~ ;  Willis et al. 1972) the 
value of the Rayleigh number at  which the transition to bimodal convection 
occurs in a water layer is consistent with the present investigation. The results 
of Chan (1972) also show the trend towards increased stability to the cross-roll 
disturbance at  lower values of the Prandtl number. Chan shows the dependence 
of the cross-roll stability boundary on the wavenumber for P N 16 and observes 
stable rolls up to a Rayleigh number of 3 x lo4. 

4.2. The xig-zag instability 
The zig-zag disturbances cause the steady rolls to deform their boundaries in a 
zig-zag fashion thereby shortening the effective wavelength of the rolls. Accord- 
ingly, the zig-zag instability occurs when the wavenumber of the steady roll is 
too small. For convection at small amplitude it occurs when the wavenumber of 
the steady solution is less than the optimal value aC. In  the mathematical sense 
the zig-zag instability is formed out of disturbances with even h + u having 
antisymmetric y dependence with d = 0 and emerges out of a neutral disturbance 
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with vanishing growth rate in the limit of small b wavenumber. Again we can 
keep the description of this instability short since it has been investigated theo- 
retically and experimentally in the high Prandtl number case (Busse 1967; 
Busse & Whitehead 1971). 

As in the case of the cross-roll instability the momentum advection terms 
tend to have a stabilizing effect and in the case of air the zig-zag instability al- 
ready becomes unimportant except in the region very close to R, (figure 6). For 
mercury the instability was no longer noticeable within the accuracy of the 
calculations. 

4.3. The E c k h u s  instability 
The Eckhaus instability corresponds to disturbances with h + v even, b = 0 
and symmetric y dependence. It is the only instability of physical significance 
with d + 0 (except for asymmetric convection as caused, for example, by 
temperature-dependent properties). Eckhaus (1965) first discussed this two- 
dimensional instability in the context of the nonlinear Orr-Sommerfeld problem 
for Poiseuille flow. Although it represents a rather simple form of instability 
there appear to be no unambiguous experimental observations of it. This is 
mainly caused by the fact that convection experiments with controlled initial 
conditions are difficult to perform at low Prandtl numbers, where the Eckhaus 
mechanism becomes important. As was pointed out by Busse (1971) the Eckhaus 
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FIGURE 7. The stability of two-dimensional convection in a layer of mercury ( P  = 0.025). 
Within the closed region convection rolls are stable. 

instability replaces the cross-roll instability in limiting the wavenumber of 
physically realizable small amplitude convection for Prandtl numbers less than 
1.1, The present numerical results confirm Busse’s small amplitude results as is 
shown in figure 6. At higher Rayleigh numbers with P = 0.71 the cross-roll 
instability still appears to have a slight edge over the Eckhaus mechanism. This 
property tends to vanish as the Prandtl number is further decreased and for 
mercury (figure 7 )  the appearance of the cross-roll instability is fully replaced 
by the Eckhaus instability. 

4.4. The oscillatory instability 
The oscillatory instability shares with the zig-zag instability the property that 
it corresponds to disturbances with h + u even, d = 0 and antisymmetric y de- 
pendence. While in the limit of small b wavenumber the zig-zag instability re- 
duces to a neutral disturbance corresponding to a small shift of the roll pattern 
in the y direction, the oscillatory disturbance retains in the same limit a finite 
value of the vertical vorticity. In  the limit b = 0 the vertical vorticity becomes 
independent of the horizontal co-ordinates and corresponds to a slight rotation 
of the steady convection pattern. Because of the presence of rigid boundaries 
this disturbance is highly damped as is evident in figure 8. This property is 
qualitatively changed in the case of free boundaries since instability is possible 
even in the limit of small b wavenumber although the growth rate becomes 
vanishingly small in this limit. This qualitative difference explains, however, 
why the critical Rayleigh number R, for the onset of oscillations is much higher 
in the case of rigid boundaries than in the case of free boundaries. 

A qualitative sketch of the instability is shown in figure 9. Instructive photo- 
graphs of oscillatory convection rolls in air layers are shown in the paper by Willis 
& Deardorff (1970). The agreement between experimental findings and the 
present theoretical predictions is nearly perfect. In order to make a comparison 
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FIGURE 8. The dependence of u and b for the oscillatory instability in the case P = 0.71 
and a = 2.0. The lower and the upper curves in the case of the real part of u (solid lines) 
and in the case of the imaginary part (dashed lines) refer to R = 5000 and R = 7000, 
respectively. 

-4 

FIGURE 9. A qualitative sketch of oscillating convection rolls. The bending of the rolls 
propagates along the roll axis in time. 
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of the critical Rayleigh numbers R, for the onset of oscillations the strong de- 
pendence of R, on the wavenumber a has to be taken into account. A plot of the 
experimentally observed wavenumber dependence on the Rayleigh number for 
an air layer is given in the paper by Willis et al. (1972). When this is plotted on 
the stability diagram given in figure 6 a value of R, 1: 6000 is obtained which 
compares well with the value R, 21 5800 observed by Willis & Deardorff (1970). 
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FIGURE 10. The frequency of the oscillatory disturbance in the case CT? = 0 for different 
values of a (shown on curves). 0 ,  experimental results of Willis & Deardorff (1970) for 
R x 6000 and CL. % 2.2. 
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FIGURE 11. The critical Rayleigh number R, for the onset of the oscillatory instability 
vs. the Prandtl number for different wavenumbers CL (shown on curves). 
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FIGURE 12. The frequency of the oscillatory disturbance as a function of the Rayleigh 
number. The numbers on the curves indicate the Prandtl number (first figure) and the 
wavenumber b. The dependence of ui on the wavenumber a is negligibly small. 

The comparison for the frequency shows similar agreement. I n  figure 10 the 
frequency of oscillation a t  the onset of instability (figure 11) has been plotted as 
a function of the Prandtl number and wavenumber a. Figure 12 shows the 
dependence of gi on the b wavenumber a t  larger Rayleigh numbers. The good 
agreement between theory and experiment does not leave any doubt that  
they describe the same phenomenon. 

I n  the case of mercury no direct visual observations have been possible and 
the comparison between theory and experiment is less satisfying. I n  a recent 
paper Krishnamurti (1974)reports that oscillations are first observed at R z 2400. 
This is somewhat higher than is indicated by the theoretical curve shown in 
figure 7 even if it is taken into account that the experimental wavenumber 
dependence on the Rayleigh number is not known owing to the lack of direct 
visual observations. This discrepancy may be caused either by the fact that  
finite oscillation amplitudes are required for the observations or the fact that the 
theoretical condition of infinite conductivity of the boundary is not sufficiently 
approximated in the experiment with mercury. 

I n  the case of water no experimental observations of the oscillatory instability 
of convection rolls have been reported. This is in agreement with the present 
theoretical results that the cross-roll instability leading to bimodal convection 
sets in at lower Rayleigh numbers than does the oscillatory instability. For this 
reason the latter instability has not been drawn in figure 5. It is estimated that 
for Prandtl numbers less than about 5 the stability boundaries of the oscillatory 
and cross-roll instabilities intersect in the R, a plane. 

41-2 
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5. Concluding remarks 
A major conclusion to be drawn from the theory presented in this paper is the 

fact that the transition from steady convection to time-dependent convection 
depends strongly on the wavenumber a. The wavenumber is not an external 
parameter and may depend on numerous secondary influences in laboratory 
experiments. Nonlinear instability mechanisms induced by the side walls of the 
convection layer have been shown to  change the wavenumber (Busse & White- 
head 1971) and the rate a t  which the Rayleigh number is increased in the con- 
vection experiment is likely to have a significant influence. Krishnamurti 
(1970a) has studied the experimental dependence on the wavenumber in the 
case of the transition to bimodal convection and has emphasized hysteresis 
effects. Since the oscillatory instability exhibits an even stronger dependence 
on the wavenumber, considerable variation in the transition to time-dependent 
convection has to be expected in different experiments. 

The interesting feature of the oscillatory instability is the fact that it does not 
occur at  Rayleigh numbers close to the critical value R,. All other instabilities 
mentioned in this paper show stability boundaries converging a t  R = R,. The 
property that the amplitude of motion has to exceed a finite value for the onset of 
oscillations is similar to the changing influence of the momentum advection term 
on the convective heat transport. In  this case the amplifying influence becomes 
noticeable also only after a certain finite amplitude has been exceeded. 

The fact that the oscillatory instability is caused by the momentum advec- 
tion terms has been emphasized earlier (Busse 1972). The present results support 
this reasoning even though calculations have not been carried to very high 
Prandtl numbers. One may speculate whether oscillatory instabilities can be 
expected in the limit of infinite Prandtl number. While the heat equation 
seems to indicate that oscillations cannot be supported without the presence of 
the momentum advection terms a rigorous answer to this question has not been 
given. 

The research reported in this paper was partly supported by the National 
Science Foundation under Grant GK-31246. A major portion of this work has 
been part of the Ph.D. dissertation submitted by one of the authors (RMC) 
in partial fulfillment of the requirements for the Ph.D. degree in Engineering 
a t  UCLA. 
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